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We study the characteristics of chaos evolution of initially localized energy excitations in the one-
dimensional nonlinear disordered Klein—Gordon lattice of anharmonic oscillators, by computing
the time variation of the fundamental frequencies of the motion of each oscillator. We focus
our attention on the dynamics of the so-called “weak chaos” and “strong chaos” spreading
regimes |[Laptyeva_ et _al, l20_1d], for which Anderson localization is destroyed, as the initially
restricted excitation at the central region of the lattice propagates in time to more lattice sites.
Based on the fact that large variations of the fundamental frequencies denote strong chaotic
behavior, we show that in both regimes chaos is more intense at the central regions of the wave
packet, where also the energy content is higher. On the other hand, the oscillators at the wave
packet’s edges, through which the energy propagation happens, exhibit regular motion up until
the time they gain enough energy to become part of the highly excited portion of the wave
packet. Eventually, the percentage of chaotic oscillators remains practically constant, despite
the fact that the number of excited sites grows as the wave packet spreads, but the portion of
highly chaotic sites decreases in time. Thus, albeit the number of chaotic oscillators is constantly
growing the strength of their chaotic behavior decreases, indicating that although chaos persists
it is becoming weaker in time. We show that the extent of the zones of regular motion at the
edges of the wave packet in the strong chaos regime is much smaller than in the weak chaos case.
Furthermore, we find that in the strong chaos regime the chaotic component of the wave packet
is not only more extended than in the weak chaos one, but in addition the fraction of strongly
chaotic oscillators is much higher. Another important difference between the weak and strong
chaos regimes is that in the latter case a significantly larger number of frequencies is excited,
even from the first stages of the evolution. Moreover, our computations confirmed the shifting
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of fundamental frequencies outside the normal mode frequency band of the linear system in
the case of the so-called “selftrapping” regime where a large part of the wave packet remains

localized.

Keywords:
chaos; weak and strong chaos; selftrapping.

1. Introduction

The nonlinear disordered Klein-Gordon (DKG)
lattice of coupled anharmonic oscillators has been
extensively used in studies of the effect of nonlinear-
ity on the energy propagation in disordered media,

mainly in one (1D) [‘ELa&h_QLaLJ 2009; ISkokos et all,

\Iﬁmﬂ_ﬁt_uﬂ [SJmlms_&LElacﬂ 2010;
Bodyfelt et alJ IZDA{J IBodeelt et alJ

Skokos et _all [29_3 IAntononoulos et alJ
M, IAntononoulos et alJ, 129_7], [Sﬂmge_euﬂ,
2018; Senvange & Skokod, 2021] but also in two
(2D) |Laptyeva et all, 12012; E&MM_QMZJ, 2014
Many Man , [2Q2d] spatial dimensions. In
these studies numerical evidences of the destruc-

tion of “Anderson localization” ﬂA.nd.atsoﬂ, l].9_5fj;
Kramer & MacKinnorl, 1993] (i.e. the halt of energy

spreading observed in linear, sufficiently disordered
systems) were presented.

In particular, for the 1D DKG system, which
has been studied in more detail than its 2D coun-
terpart whose long-time numerical integration is a
very demanding computational task, the existence
of two energy spreading dynamical regimes was the-
oretically predicted and numerically verified: the so-
called “weak” and “strong chaos” regimes, which
are characterized by different dynamical behaviors.
More specifically, the second moment msg of the nor-
malized energy distribution increases in time ¢ as
ma(t) o< t* with ap, = 1/3 (am = 1/2) for the
weak (strong) chaos case, while the corresponding
participation number P grows as P(t) o« t® with
a, = 1/6 (ap = 1/4). In addition, the appearance of
a “selftrapping” regime, where the bulk of the wave
packet remains localized, was also theorized and

observed |Kopidakis et all lZQOS; Flach et al], IZDQQ;
[SMS_QLQJJ, DDQQ; Laptveva. et alJ, [2@; M,
2010; Bodyfelt et all, 1201 lal]. The generality of these

results was substantiated by the fact that the same
dynamical behaviors were observed also for the dis-
ordered discrete nonlinear Schrodinger (DDNLS)

equation [Molina, 1998, [Pikovsky & Shepelyansky,

Disordered system; Hamiltonian lattice; frequency map analysis; spatiotemporal

2008; M% 2009; Flach
et al. I@ m

2010; Bodyfelt et atl, 2011; Bodyfelt et al, ROL1L;
[S_en;La.ugLe_t_aU, 2018; |Ka$1_QLaU, 2019], whose
numerical integration is much more demanding
from a computational point of view. Further sub-
stantiation was produced from high speed iterations
of related nonlinear unitary maps using discrete
time quantum walks which not only confirmed the
generality of the spreading results, but which also
allowed to push time horizons of subdiffusion to
record 10'? [Vakulchyk et all, [2019).

All these studies indicated the chaotic nature
of energy spreading in nonlinear disordered media.
The characteristics of this chaotic behavior were

1nvest1gated in [Skokos et all, 12013; |Senyange et al,
2018 8] and [Many Manda et all, l2ﬂ2d for, respec-
tively, 1D and 2D disordered lattices, through the
time evolution of the most commonly used chaos
indicator the maximum Lyapunov exponent (MLE)

NBﬁnﬂtLan_LaU 11980a, 19801); |
[Elkmzsk;L&_HﬂmJ 2016] and the study of the prop—

erties of the so-called “deviation wvector distribu-
tion” (DVD) of the tangent space vector used for
the computation of the MLE. There it was shown
that the overall strength of chaos is decreasing as
an initially localized energy excitation spreads to
more lattice sites, but without any sign of a poten-
tially crossover to regular behavior as was specu-
lated in |Johansson et all, 2010; [Aubry, 2011], at
least up to the maximum evolution times reached in
those studies. This behavior is reflected in the time
decay of the finite time MLE (ftMLE) A, i.e. A(t)
t*, with ap ~ —0.25 (ap ~ —0.3) for the weak
(strong) chaos regime of 1D systems ,
12013; [Senyange et all, hﬁﬂ], and with ay ~ —0.37
(an = —0.46) for the weak (strong) chaos case
of 2D systems [Many Manda et all, 2020]. Tt is
also worth noting the existence of a dimension-
independent scaling between the wave packet’s
spreading and chaoticity, quantified by the same
behavior of the ratio A(t)/ms(t) in 1D and 2D sys-

tems [Many Manda et QZJ, [2Q2d]
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The scope of the current paper is to shed some
additional light on the spatiotemporal characteris-
tics of chaos in 1D disordered, nonlinear lattices.
The MLE is an average measure of chaoticity pro-
viding information about the global behavior of a
dynamical system. As such, the value of the MLE
by itself is not enough to understand the spatiotem-
poral evolution of active chaotic regions in a mul-
tidimensional system |Tieleman et all, 2014]. Thus,
in order to follow the chaotic or regular behavior
of each individual lattice site in time we implement
the so-called “frequency map analysis” (FMA) tech-
nique |Laskar, ; , 11992; [Laskan,

] and evaluate the fundamental frequency of
an appropriate time series produced by the coordi-
nates of each oscillator. Then, we use the variations
of these frequencies to identify chaotic behavior.
This approach allows us to visualize the evolution
of chaos in the propagated energy distribution and
to identify differences between the weak and strong
chaos spreading regimes.

The paper is organized as follows. In Sec. 2], we
present the Hamiltonian function of the 1D DKG
model along with the basic quantities we use to
characterize the energy spreading and the system’s
chaoticity. The numerical results of our study are
reported in Sec. B initially for some weak chaos
cases and afterwards for the strong chaos regime,
followed by a brief discussion of the selftrapping
behavior. Finally in Sec. @ we summarize our find-
ings and discuss their significance.

2. Lattice Model and Numerical
Techniques

The Hamiltonian function of the 1D DKG lattice
system of N anharmonic oscillators is

> p; @ o, 4 1 2
H:Z ?‘f‘gq@"“Z"‘ﬁ(q@‘ﬂ—Qi)a
i=1

(1)
with ¢;, p; being respectively the generalized posi-
tion and momentum of site 7. The disorder param-
eters €; take uncorrelated random values in the
interval [%, %] following a uniform probability dis-
tribution, and W > 0 determines the disorder
strength. In our study we consider fixed boundary
CODditiODS, i.e. qo = Po = gN+1 = PN+1 — 0. The
Hamiltonian (IJ) is an integral of motion and its
value H (usually referred to as the system’s energy
E) remains constant in time.

Frequency Map Analysis of Spatiotemporal Chaos

We use the ABA864 symplectic integrator (SI)

Blanes et _all, 2!!13] for numerically solving the

equations of motion
. dqi . oH
=0 = apy

.'_@__6H
b= T T og

i=1,2,...,N, (2

of Hamiltonian (d), which has been proved
to be a very efficient technique for this task
Senyange & Skokos, [2018; [Danieli et all, M] In
particular, for the implementation of the ABA864
ST we split Hamiltonian (IJ) in two integrable parts,
namely the system’s kinetic and potential energy,
and use an integration time step 7 = 0.5, which,
in general, keeps the absolute value of the relative
energy error

E, =

H(t) — H(0)
70) ‘ ®)

below 107°. In our simulations we typically excite
one or few sites at the central region of the lattice
and follow the evolution of this energy excitation in
time, taking care that the lattice is large enough so
that the energy does not reach its boundaries until
the end of the integration.

In order to analyze the characteristics of the
energy spreading we define the normalized energy
distribution

2 ~ 4
Pi &G o & L. o
[2 54t +4W(q@+1 qi)

fi: B 3

i=1,2,...,N (4

and compute the distribution’s second moment
N
mo = Z(’L - %)251‘, (5)
i=1
which measures the extent of the distribution, and
the participation number

N -1
Zf?] : (6)
=1

which estimates the number of highly excited sites.
We note that in () i = Zf\; 1 9€; is the distribution’s
mean position.

The system’s chaoticity is quantified by the
MLE A4, which is estimated as the limit for t — oo
of the ftMLE

P =

L wl
£ W)l

A(t) = (7)
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i.e. Ay = limy_, o A(t) [Benettin et all,[1980a, 1980b;
Skokod, [2010; [Pikovsky & Polity, [2016]. In (@) w(0)
and w(t) are respectively phase space deviation vec-
tors from the studied orbit at ¢ = 0 and ¢t > 0,
while || - || denotes the usual Euclidian norm of a
vector. The evolution of the deviation vector is gov-
erned by the so-called “variational equations’ (see
e.g. , ] for more details), whose integra-
tion is done according to the “tangent map method”
ISkokos & Gerlachl, [2010; [Gerlach & Skokod, [2011;
Cerlach et al!, 12012] using the ABA864 SI.

Here we are interested in the spatiotemporal
evolution of chaos in the DKG system (II). Thus,
since the MLE provides information about the col-
lective and overall chaotic behavior of the system,
we implement the FMA method for identifying the
time evolution of the chaotic behavior of individual
lattice sites. Neglecting the nonlinear term ¢*/4 in
the Hamiltonian (I, the system is integrable and
the motion of each site is fully determined by a cer-
tain linear combination of the eigenfrequencies of
this system. Under the influence of the nonlinearity,
these frequencies will become time-dependent and
can be determined by using a refined Fourier tech-
nique as for example the NAFF (Numerical Anal-
ysis of Fundamental Frequencies) algorithm. For a
detailed description of NAFF and its application
for FMA in various research fields, see for example
[Laskax, 1990, [1993: Robutel & Laskail, 2000; Papa-
philippou, EHZ] and references therein.

This algorithm uses as input the numerically
integrated trajectory g¢;(t), p;(t) of oscillator i over
a time span 7' and identifies the fundamental fre-
quencies in the quasiperiodic approximation of this
motion. In this work, we compute the relative
change of the largest of these fundamental frequen-
cies f1; and fo; between two successive time win-
dows of length T = 6 - 10° time units[] In the case
of regular, quasiperiodic motion the two frequen-
cies should theoretically be equal (in practice they
slightly differ due to their numerical estimation),
while for chaotic motion, the two computed frequen-
cies are in general different, as there is no reason for
them to remain constant. Thus, the relative change
of these two frequencies, quantified by

f22 flz

D, =
‘ flz

: (®)

can be used to identify the chaotic or regular nature
of motion. More specifically, small D; values denote
the practical constancy of the fundamental fre-
quency and consequently indicate regular motion,
while large D; values signify chaotic behavior char-
acterized by strong variations in the computed fre-
quency values.

3. Numerical Results

Although in our analysis we considered several indi-
vidual cases belonging to the weak and strong chaos
regimes, as well as the selftrapping regime (more
information on the definition of these dynamical
behaviors can be found in , 12010;
[Flachl, ]), we will only report our findings for
some representative cases, which have already being
studied in the literature. In all cases we consider a
disorder realization, i.e. a set of & values in (), and
excite L central sites of a lattice of N oscillators by
setting their positions at zero and adjusting their
momenta so that each one of them has the same
energy density e = E/L. For single site excitations
(L = 1) always a positive momentum is used, while
for block excitations (L > 1) the sign of the initial
momentum of each excited site is chosen randomly.
In particular, we consider the following cases:

(1) Weak chaos regime

(a) Case WCI (single site excitation) N =999,
W=4L=1e=F —04(caseW2Kof

Sen;gangg et all, 2018]).
(b) Case WCII (block exmtation): N = 999,
W =4,L=21,e=0.01, F=0.21 (case

W3x of [Senyange et all, 2018)]).

(2) Strong chaos regime

(a) Case SCI (block excitation): N = 3499,
W =4, L =21, e =02, E = 4.2 (case
studied in [Bodyfelt et all, )2011a]).

(b) Case SCII (block excitation): N = 2499,
W =3,L=37,e=0.1, E =3.7 (case S2

of [Senyange et all, 2018]).

(3) Selftrapping regime

(a) Case STI (single site excitation): N = 399,
W =4, L=1,e=FE =15 (case studied in

ISkokos et all, [2009]).

1Dulring initial test runs we found that 7 = 6 - 10° time units provides reliable and accurate estimates for f.
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logyy P

Fig. 1.

log,, t

Time evolution of (a) the second moment mao(t) (@), (b) the participation number P(t) (@), and (c) the ftMLE A(t)

(@ for the weak chaos cases WCI (red curves) and WCII (blue curves) in log-log scale. The straight dashed lines indicate

slopes (a) 1/3, (b) 1/6 and (c) —0.25.

3.1.

In Fig. [[l, we see that the evolution of the second
moment ma(t) [Fig. [[(a)], the participation num-
ber P(t) [Fig. D(b)] and the ftMLE A(t) [Fig. (c)]
exhibits the expected behavior for both the WCI
(red curves) and the WCII case (blue curves). More

specifically, in accordance to [Flach et all, 2009;
Skokos_et_all, 12009; [Laptyeva et all, [2010; [Flach,
2010; Bodyfelt. et all, [20114] the asymptotic behav-
ior of the wave packet’s dynamics is characterized
by ma(t) o t'/3 and P(t) o t'/6, while the ftMLE
shows a decrease A(t) o< t~9%% as was reported in
ﬂsmmw_au, 12013; [Senyange et all, |2Q18].

Let us first study in detail the WCI weak chaos
case where initially one site is excited at the mid-
dle of a lattice with N = 999 oscillators. As time
increases the system’s constant total energy E () is
spread to more sites as can be seen from Figs. 2(a)
and 2(c) where we depict the energy evolution in
two time windows of length 10® time units: imme-
diately after the initial excitation [Fig. la)] and

Weak chaos dynamaical regime

after 9 - 108 time units [Fig. &(c)]. In order to visu-
alize the change in time of the chaoticity of each
lattice site we also perform the FMA of the system
and compute the evolution of the quantity D; (§),
which captures the variation of the sites’ fundamen-
tal frequencies in two successive time windows of
length 6 - 10° attributing the computed D; value of
each site at the beginning of these two time inter-
vals. The outcome of this process is presented in
Figs. 2(b) and 2I(d), respectively for the time inter-
vals of Figs. Pl(a) and [Z(c). There each site is col-
ored according to its log;y D; value. Chaotic behav-
ior corresponding to large frequency changes and
high log,y D; values is indicated by red and yellow
colors, while regions of low log;y D; values denoting
small frequency changes attributed to regular, non-
chaotic behavior are colored in purple and black.
From the results of Figs. 2(b) and (d) we clearly
see that chaos appears at the central regions of the
wave packet, where also the energy concentration
is higher as Figs. (a) and (c) indicate. On the
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1.0-10°9.0 - 108
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The time evolution of [(a) and (c)] the normalized energy distribution &; @) and [(b) and (d)] the quantity D; @) for

the WCI case in the time intervals [(a) and (b)] 0 < ¢ < 10% and [(c) and (d)] 9- 108 < ¢ < 10°. In each panel the horizontal
axis is time ¢ in linear scale, while the vertical axis shows the site number 7. The color scales at the top of the upper row of
panels are used for coloring lattice sites according to [(a) and (c)] log;o & and [(b) and (d)] log;q D; values.

other hand, the edges of the wave packet, through
which energy spreading takes place, behave more
regularly having also significantly smaller energies
than the central regions.

It is worth mentioning here a practical issue.
In order to compute the change in the fundamen-
tal frequencies using the NAFF algorithm for two
successive time windows of length 6-10° time units,
we have to ensure that the time series we analyze
is reliable and accurate. For this reason we perform
the computation of D; only if the absolute values
for each of the two successive frequencies fi; and
fo; are above the adopted threshold of 10716, If this
condition is not satisfied then we do not regard
the computed frequency as accurate and we dis-
miss it. For the computation of D; (8) we require
the obtainment of the fundamental frequency in
two successive time windows. If, according to the
above-mentioned criterion, this is not possible for
either of these time intervals we do not compute D;.
Consequently, there are several points in Figs. 2(b)
and [(d), mainly at the edges of the wave packet,
where the values of | f1;] and/or | fy;| are very small,
for which we do not compute a D; value, although
these sites have (very small) energies, as can be seen
in Figs. l(a) and 2(c).

Although the color maps of D; values in
Figs. BIb) and RId) accurately capture subtle
changes in the chaotic behavior of lattice sites,
we also follow below a different approach in order
to clearly visualize the spatiotemporal evolution of
chaos in the system. In order to do so, let us first
note that the frequencies of the normal modes of
the linear DKG model, i.e. the system obtained
by neglecting the nonlinear terms ¢}/4 in Hamil-
tonian (I, belong to a well-defined interval. More
specifically, the normal mode eigenvalues w? €

—%f%—l—%],uz1,2,...,N(seee.g. nyan ,
| and references therein), so that
Wy, 1 3W + 8

= c , . 9

= [2\/% 21V 2W ®)

The presence of nonlinearity induces a frequency
shift to higher frequency values [Skokos & Flach,
M] This shift increases with the growth of the
system’s energy FE, which actually plays the role
of the nonlinearity strength. Thus, the fundamen-
tal frequencies of all lattice oscillators are expected
to belong to a frequency band similar to (@), hav-
ing somehow raised lower and upper limits. This
is actually true as our numerical results reported
below clearly verify.
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In our study we consider set-ups for only two
values of W, namely W = 3 (case SCII) and W =4
(all other cases). For each W value we consider a
range of possible frequencies, which is slightly larger
than the one reported in (@) in order to be certain
that it will contain the actually computed frequen-
cies of the nonlinear system (II). In particular, for
W = 3 we consider the frequency band [0.1,0.28]
and for W = 4 the interval [0.1,0.26]. These ranges
are then divided into n = 500 bins of equal length,
setting the width of each frequency bin to be of the
order of 1074, During the wave packet’s evolution
the fundamental frequencies are computed and for
each site the bin which contains the found frequency
is registered. This is called one visit to that bin. In
the course of the integration, the number of visits
to the bin that received the most visits up to this
point for each site is divided by the number of total
registered bin visits (i.e. total number of frequency
computations) for this site. This gives the relative
number of visits of the most visited frequency bin
for each site and is used to measure what we call
“frequency locking” of site ¢ (FL;). This number is
always 0 < FL; < 1. The value FL; = 1 for a partic-
ular site ¢ indicates that during the evolution this
site had always the same frequency (actually this
means that although the frequency might change
a bit it remained in the same bin, i.e. it does not
change much as the bins’ width is ~107%), signify-
ing effectively regular behavior. On the other hand,
small FL; values denote many changes of the funda-
mental frequency as the placement of the computed

Frequency Map Analysis of Spatiotemporal Chaos

values in one frequency bin is low, and consequently
indicate chaotic behavior, which becomes stronger
as FL; decreases.

The computation of FL; is done based on data
from a time window of 1.2 - 10° time units and
repeated each 1.2 - 10° time units. To avoid satu-
ration effects the computation is reinitialized after
a fixed time interval, which is set to be tp;, = 2.4 -
107 in order to better follow the time evolution of
this quantity in different evolution stages of the
wave packet. By doing that we would for exam-
ple be able to identify potential regularly behaving
epochs in the dynamics of a lattice site, i.e. time
intervals for which its frequency remains practically
constant, although from time to time the value of
the practically constant frequency might change.

The results of the computation of FL; for the
WCT case are shown in Figs. Bl(a) and B(b) respec-
tively for the time intervals 0 < t < 10% and
9-108 < t < 107, Points for which the fundamental
frequencies of the lattice sites were computed are
colored according to their FIL; values, with red and
yellow colors denoting small FL; values indicating
strong chaotic behavior. On the other hand, regions
with very high FL; values close to 1 colored in black
correspond to regular motion. The reinitialization
of the FL;’s computation every tp;, = 2.4 - 107 time
units results in the creation of the equidistant ver-
tical “lines” in both panels of Fig. Bl

In accordance to the results presented in
Figs. 2(b) and 2(d), Fig. Bl shows that the edges
of the wave packet behave regularly, while chaos

site i

0.0

200+
0

2107 1107 6-107 8.107
t

1-108 9.0- 108

9.6 108 9.8 108 10-10°

t

927108 94108

Fig. 3. Frequency locking FL; values at each lattice site 4 for (a) 0 < ¢ < 10% and (b) 9-10% < ¢ < 10° (WCI case). The color
scales on the right of the panels are used to color the points for which the fundamental frequencies were obtained, according

to their FL; values.
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appears at the central region of the lattice’s excited
part. The fact that in the FL; plots of Fig. 3] we
do not restrict ourselves in computing the exact
frequencies, but we allow some frequency changes
of the order of the width of the bin, i.e. ~107%,
results in the creation of pictures depicting the sys-
tem’s dynamics more clearly than the D; color plots
[Figs. B(b) and Bl(d)], emphasizing especially the
more active chaotic regions of the lattice, which
exhibit large changes in their frequencies. The D;
plots are more detailed and of course more accu-
rate, but the many details they provide make the
picture somewhat more obscure, hiding the main
dynamical features of the system. For example, in
Fig. B(b) the footprint of a horizontal “stripe” of
regular motion around i = 480, lasting for almost
the whole duration of the presented time interval,
is easily identified as points there are mainly col-
ored in black. This region is also present in Fig. 2l(d)
where points are mostly colored in purple/dark red,
indicating values of log,q D; ~ 107°, but is not as
easily visible as in Fig. Bi(b).

60

0.0 < FL; < 02 100 (a)

—— 02<=TFL; <04
504 —— 04<=FL; <06
— 06<=FL <08

— 08<=FL <10

606 2. 107 4. 107 6 10 8-107
0.0 < FL; < 02 100
—— 02<=FL; < 04 (C)
504 = 04<=FL; <06
— 06<=FL; <08 =
— 08<=FL <10 & 50
404
1 0 T |
&304 9.0-108 9.5-108 1.0-10°

The comparison of Figs. Bla) and Bib) shows
that as time grows the portion of the wave packet
exhibiting chaotic behavior (i.e. points not col-
ored in black) decreases. This is mainly due to the
fact that the regularly behaving sites at the black
colored edges of the wave packet grow. In order
to quantify this observation we plot in Figs. [{a)
and Ml(c) the evolution of the percentage ppr of
sites, respectively shown in Figs. B(a) and Bl(b),
having FL; values in various intervals. In partic-
ular, we consider the intervals 0 < FL; < 0.2
(yellow curves), 0.2 < FL; < 0.4 (orange curves),
0.4 < FL; < 0.6 (red curves), 0.6 < FL; < 0.8 (blue
curves), 0.8 < FL; < 1 (purple curves), while in
the insets of Figs. Ml(a) and Hl(c) we plot the evo-
lution of pgy for sites having FL; = 1, i.e. sites
whose fundamental frequency does not change much
as it always remains in one bin indicating regu-
lar motion. The presented results are obtained by
the analysis of the data shown in Fig. [3, so we see
again here a vertical “stripe” formation of length
tpr, = 2.4 - 107 related to the reinitialization of

0.0 < FL; < 02 (b)

W 02 <=FL; <04
W 04<=FL <06
B 06<=FL; <08
B 05 <=FL <10

6-107
0.0 < FL; < 02 (d)

B 02 <=FL <04
W 04<=FL <06
80+ B 06 <=FL; <08

4.107

B 08 <=FL; <10

96108 98108 1.0-10°

t

92108 9410

0
9.0-108

Fig. 4. Time evolution of [(a) and (c)] the percentages ppy, of sites exhibiting FIL; values in particular intervals, and [(b) and
(d)] the accumulated percentages Py, of sites with values in a particular FL; range, for [(a) and (b)] 0 < ¢ < 10% and [(c) and
(d)] 9-10% <t < 109 (WCI case). The considered intervals are: 0 < FL; < 0.2 (yellow curves), 0.2 < FL; < 0.4 (orange curves),
0.4 < FL; < 0.6 (red curves), 0.6 < FL; < 0.8 (blue curves), 0.8 < FL; < 1 (purple curves). Insets in panels (a) and (c): The
time evolution of the percentage of sites with FL; = 1, i.e. points plotted in black in Fig. Bl which correspond to regions of
regular motion. All presented results are obtained by the analysis of the outcomes presented in Fig. [3] The reinitialization of
the FL;’s computation every ¢z7, = 2.4 - 107 time units leads to the vertical “stripe”-looking feature appearing in all panels.
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the FL; computations. In Figs. H(b) and H(d) we
depict the accumulated percentages Pp; obtained
by adding up respectively the results of Figs. [d(a)
and M(c), with data belonging to the various ranges
of FL; values colored according to the color code
used in Figs. [d(a) and Ml(c) [these color ranges are
also given in the legends of Figs. El(b) and E{(d)].

From the results of Figs. Hl(a) and H(b) we
see that at the initial stages of the evolution the
percentage of chaotic sites (i.e. the ones having
FL; # 1) decreases, and obviously the number of
sites showing consistent regular behavior (FL; = 1)
increases [see inset of Fig. [dl(a)]. It is worth noting
that the percentage of strongly chaotic regions, i.e.
the ones having FL; < 0.4, remains relative low,
e.g. prr, ~ 3.4% for sites with 0.2 < FL; < 04
[orange curve in Fig. dl(a)], while the ppy, values for
FL; < 0.2 are too small (~ 0.02%) so that the cor-
responding yellow curve is practically not visible in
Fig.d(a). Furthermore, the fraction of sites of mod-
erate (0.4 < FL; < 0.6 and 0.6 < FL; < 0.8 — red
and blue curves, respectively) and of weak chaotic
behavior (0.8 < FL; < 1 — purple curve) show
signs of saturation to values pp; =~ 10% for each
one of these three FL; ranges. This saturation to
some asymptotic ppr, and Ppr, values becomes evi-
dent in Figs. {c) and Eld). More specifically, we
see that the red, blue and purple curves in Fig. ll(c)
oscillate around values prr, &~ 10% with red (purple)
curves being slightly below (above) this value. Fur-
thermore, the percentages of well-established reg-
ular behavior remains practically constant around
prr ~ 65% [inset of Fig. Hlc)], while the strong
chaotic behavior (FL; < 0.4), corresponding to
orange and yellow curves [which are practically
not visible in Fig. M{c)], obtains very small values
PFL g 1%.

From the results of Figs. BHil we see that chaotic
behavior indicated by high D; values [points col-
ored in red and yellow Figs. Rl(b) and 2l(d)] and by
low FL; values [points not colored black in Fig.
and data presented in the main panels of Fig. [],
are mainly concentrated at the central regions of
the wave packet. These results suggest that chaotic-
ity is not extended, as the large portion of sites at
the edges of the wave packet, whose frequency does
not practically change, exhibit regular behavior.
Thus, in general, points which are slightly excited
at the wave packet’s boundaries are initially not
chaotic (having relatively small D; and large FL;
values) until they become part of the highly excited

Frequency Map Analysis of Spatiotemporal Chaos

component of the wave packet, when more energy
reaches them.

Furthermore, during the above-mentioned FL;
computations additional information is gathered.
More specifically, for each frequency bin the num-
ber of sites having their fundamental frequency in
the bin is registered. The intention here is to iden-
tify frequencies (or more accurately frequency bins,
i.e. small frequency ranges) which dominate the
dynamics of the system by having many sites oscil-
lating with these particular frequencies. In this way,
we quantify the importance or the influence of the
particular frequency range on the dynamical evo-
lution of the lattice. The outcome of these compu-
tations are shown in Fig. [f] for the two time inter-
vals 0 < t < 10® [Fig. Bla)] and 9 - 10® < ¢t < 10°
[Fig. Bl(b)] we have considered so far. If at a given
time the computed fundamental frequencies of some
sites are located inside a particular frequency bin
then a point marks this occurrence in Fig. Bl This
point is colored according to the number of sites
belonging in the frequency bin at each time instant
(we will refer to this measure as the “frequency
strength”, FS, of the particular frequency bin) fol-
lowing the color code depicted on the right side of
Fig. Bl Thus, red and yellow colors indicate many
sites in a particular frequency range, while the
lack of computed frequencies correspond to white
regions in Fig. [l

From the results of Fig. [l we see that as time
grows more frequencies are excited since the extent
of the white regions in Fig. Bl(b) is smaller that the
one observed in Fig.[B)(a). Furthermore, in both time
windows only a few frequency bins are highly popu-
lated (the ones colored in red and yellow). The cor-
responding frequencies are mainly located near the
middle of the frequency band of Fig. Bl (f; ~ 0.19),
although some frequencies with higher F'S values
are also present in the interval f; = 0.2-0.22 [espe-
cially in Fig. B(b)].

The results presented in Figs. BH5 for the weak
chaos case WCI are quite general and characteris-
tic of the weak chaos spreading regime, as similar
behaviors have been observed for all other studied
weak chaos cases. As a testimony to that we present
in Fig. [d results obtained for the WCII case in
which we initially excite L = 21 neighboring lattice
sites, in contrast to the single site excitation (L = 1)
of case WCI. For the WCII case we see again that
as the wave packet spreads the region of intense
chaoticity [i.e. points colored in red and yellow in
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0 2107 4.107 6-107 8-107 1-108 9.0-10° 92108 94108 9.6- 108 9.8-10° 10-10°
t t

Fig. 5. Time evolution of the computed site frequencies f; in the WCI case for the time intervals (a) 0 < ¢t < 10% and (b)
9.10% <t < 10°. The presented frequency range [0.1,0.26] has been divided in n = 500 bins of equal length and each bin is
colored according to the number of sites having frequencies in its value range at each time instant [which quantifies the bin’s
“frequency strength” (FS)] according to the color scales on the right side of the panels. White colored areas correspond to
regions where no frequencies were found. The horizontal thick dashed green lines indicate the frequency band borders (@) of
the linear DKG system.
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Fig. 6. Weak chaos case WCII. Time evolution of various quantities computed during the wave packet propagation in the
time windows [(a), (c), (e), (g)] 0 <t < 10 and [(b), (d), (f), (h)] 9-10% < ¢ < 10%: [(a) and (b)] the quantity D; () [plots
similar to Figs. BIb) and BI(d)], [(c) and (d)] frequency locking FL; values (plots similar to Fig. ), [(e) and (f)] percentages
prr, [plots similar to Figs. @(a) and H(c)], and [(g) and (h)] computed site frequencies f; (plots similar to Fig. [).
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the D; plots in Figs. [B(a) and [B((b)] remains con-
fined, well inside the extent of the wave packet, at
the borders of which we encounter extended regions
of regular behavior [black colored areas in Figs. [6l(c)
and[0l(d)]. Again the percentage pry, of sites exhibit-
ing complete frequency locking (FL; = 1) eventually
remains practically constant attaining rather high
values, prr, ~ 80%, as can be seen in the insets of
Figs.[Ble) and [B(f), which are somewhat larger than
the ones observed in the WCI case [prr, ~ 60% —
see insets of Figs. B(a) and Hl(c)]. At the same
time, as in the WCI case, the fraction of the highly
chaotic sites characterized by FL; < 0.4 is very
small, ppr, & 0.5%, with the remaining sites behav-
ing chaotically, i.e. having FL; values in the range
[0.4,1) [Figs. Ble) and [6(f)]. Figures Bl(g) and Bl(h)
clearly show that, as in the WCI case (Fig. [), ini-
tially a few frequencies are excited, but later on,
as the energy spreads to more sites, the number of
excited frequencies increases. Again a rather small
number of frequencies, mainly located near the mid-
dle of the frequency band [points colored in red and

Frequency Map Analysis of Spatiotemporal Chaos

yellow in Figs. Bl(g) and [6(h)] strongly influence the
dynamics of the lattice as they are highly populated
for most of the integration time.

3.2. Strong chaos dynamical regime

Let us now focus on the strong chaos spread-
ing dynamical regime, which is characterized by
a potentially long-lasting faster expansion of the
wave packet, with respect to what is observed
in the weak chaos case, eventually followed
by a crossover to a slower subdiffusive weak

chaos spreading [Laptyeva._et all, 2010; [Flachl, 12010;
Bodyfelt et all

, 120114d; ISenyange et all, 12018].
In Fig. [, we present the results for the two
representative strong chaos cases we consider in
our study, namely cases SCI (red curves) and
SCII (blue curves). All quantities are eventually
behaving according to what is expected in the
strong chaos regime. More specifically the sec-
ond moment (B) and the participation number
P(t) (@) follow respectively power law growths

ma(t) o< t1/2 and P(t) o t'/* [Laptyeva et all,

logy, t

()

Fig. 7. Similar to Fig. [l but for the strong chaos cases SCI (red curves) and SCII (blue curves): time evolution of (a) the
second moment ma(t) (@), (b) the participation number P(t) (@) and (c) the ftMLE A(t) (@) in log-log scale. The straight

dashed lines indicate slopes (a) 1/2, (b) 1/4 and (c¢) —0.3.
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2010; [Flach, [2010; Bodyfelt et all, [2011a], while
the decrease of the ftMLE () is well described by
A(#) o< t793 [Senyange et all, 2018].

In order to investigate in depth the characteris-
tics of chaos in the strong chaos regime, along with
their differences to the weak chaos behaviors pre-
sented in Sec. B we analyze in detail the SCI
case. In our comparisons between the strong and
weak chaos behaviors we will refer to the WCI case,
which, as we already mentioned in Sec.31l is a good
representative of the weak chaos spreading regime,
since all other tested cases (like for example the
WCII case of Fig. [Al), exhibited similar behaviors.
In the strong chaos regime spreading is faster than
in the weak chaos case (something which is quanti-
fied by the larger exponents in the power law time
evolutions of mgy and P), so for its numerical inves-
tigation we need larger lattices in order to avoid the
appearance of boundary effects. For this reason the
lattice size in the SCI and SCII cases is at least dou-
bled with respect to the weak chaos cases of Sec. 3]
This faster spreading is also evident by the compar-
ison of the energy distributions &; (@) in Figs. Bl(a)
and [§(c) with the ones in Figs. 2(a) and 2(c), as in
the former case significantly more sites have been
excited as same times.

What is more interesting though, is the pic-
ture emerging by contrasting the chaotic behavior

of the SCI and WCI cases through the compari-
son of their D; () distributions respectively pre-
sented in Figs. B(b), B(d) and 2(b), B(d). In all
these figures the edges of the wave packet are col-
ored in purple and black, indicating low D; values
and consequently nonchaotic behavior. On the other
hand, the regions of active chaos colored in red and
yellow are significantly more extended in the SCI
case, covering a larger portion of the excited part
of the lattice than in the WCI case. This clear dif-
ference between the strong and weak chaos dynam-
ical behaviors is also vividly seen by the compari-
son of the frequency locking FL; values presented
respectively in Figs. @ and Bl From the results of
Fig. @(a) it is obvious that from the first stages
of the evolution chaos (i.e. regions with FL; # 1)
is quite extended, covering almost the whole wave
packet apart from a rather narrow area at its edges
where regular behavior (i.e. points corresponding to
FL; = 1, which are colored in black) appears. This
arrangement persists also at later stages of the evo-
lution as can be seen in Fig. Q(b).

It is worth noting though that the area of
strongly chaotic regions in Fig. B(b), correspond-
ing to very low FL; values (i.e. points colored in
orange and yellow) is decreased with respect to
Fig.[@(a). In order to understand better this behav-
ior we present in Fig. [IQ results for the percentages
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Fig. 8.
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Similar to Fig. 2 but for the strong chaos case SCI.
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prr, of sites exhibiting FL; values in particular
intervals [Figs. [0(a) and [0(c)], along with the
related accumulated percentages Ppy [Figs. [0(a)
and [[0(c)], in a similar fashion to Fig. [l The anal-
ysis of these results, as well as their comparison
with the outputs presented in Fig. @ for the WCI
case, reveal some interesting characteristics about
the chaotic behavior of the strong chaos regime,
along with some important differences with respect
to the weak chaos case. More specifically, the per-
centage of sites showing consistent regular behavior,
i.e. FL; = 1 after some initial fluctuations [see inset

70
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Similar to Fig. Bl but for the strong chaos case SCI.

of Fig. M(a)] more or less stabilize its value at
prr, ~ 20%, something which remains true also at
the later stages of the evolution, as is seen in the
inset of Fig. [[0(c). This behavior is also revealed by
the practical constancy of the height of the colored
area in Figs. [[0(b) and [I0(d), which indicate the
Pry, values of sites with FL; # 1. A similar behav-
ior was also observed for the weak chaos regime,
i.e. the percentage ppr of sites with FL; = 1 sat-
urates to an almost constant value [see insets of
Figs. @(a) and [E(c)], but that value is significantly
larger, prr, =~ 60%, than the one obtained for the

0.0 < FL; < 0.2
I 02 <=FL; <04

. 08 <= FL <10

6-107

0.0 < FL; < 02
BN 02 <=FL; <04
|
|

107

6 <= FL; < 0.8
B 038 <= FL < 10

0 ; " " " |
9.0-108 9.2-108 9.4-108 9.6-108 9.8-108 1.0-10°

Similar to Fig. @ but for the strong chaos case SCI.
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SCI case. This difference in pp; values actually
quantifies the observation that the width of the reg-
ularly behaving zone at the edges of the wave packet
[i.e. points colored in purple and black in Figs. §(b)
and B(d) and in black in Fig. @] is smaller than in
the weak chaos case [see Figs. 2(b) and [2(d), and
Fig. B3].

The differences between the weak and strong
chaos cases go beyond the decrease of the extent
of the regular component in the latter case (or
equivalently the increase of the chaotic portion),
as also the chaotic parts of the wave packet
exhibit disparate characteristics. In particular, from
Figs.[I0(a) and[I0(b) we see that at the initial stages
of the evolution the percentage of strongly chaotic
regions, i.e. sites with FL; < 0.4, shows a tendency
to slightly decrease. This tendency becomes more
evident in Fig. [0(b) where the height reached by
the orange colored area moderately lessens attain-
ing values Pp;, ~ 30% towards the end of the
depicted time interval. These levels are significantly
larger than the Pp; ~ 3% values observed in the
weak chaos case WCI for the same time inter-
val in Fig. @(b). At later stages of the evolution
[Figs.[I0(c) and[I0(d)] the fractions of sites with FL;
values at different intervals tend to oscillate around
some well defined levels. In contrast to the weak
chaos case of Fig. ll(d) where Pr; < 3% for sites
with FL; < 0.4, in the strong chaos case we see
that the percentages of these highly chaotic sites
oscillates around much higher levels as Pry, ~ 20%.

The higher degree of chaos in the strong chaos
case, in comparison to the weak chaos regime, is also
evident by the elevated pgy, values of sites exhibiting
moderate chaotic behavior. More specifically, we
see that ppr ~ 30% and prr, ~ 20% respectively

for 0.4 < FL; < 0.6 [red curve in Fig. [0(c)] and
0.6 < FL; < 0.8 [blue curve in Fig. [[0(c)] cases of
the strong chaos regime, while we had pp;, ~ 8%
[red curve in Fig. @l(c)] and ppr, &~ 10% [blue curve
in Fig. [@(c)] for these two cases in the weak chaos
regime. Furthermore, although the percentages of
low strength chaos, i.e. sites having 0.8 < FL; < 1,
are similar in both the strong and weak chaos cases,
with ppr, &~ 17% [purple curves in respectively
Figs. [[0(c) and [@(c)], it is worth noting that this
fraction is lower (higher) than the ones correspond-
ing to 0.4 < FL; < 0.6 and 0.6 < FL; < 0.8 cases in
the strong (weak) chaos regime. This behavior indi-
cates again the higher degree of chaos appearing in
the strong chaos case.

In Fig. [l we see the time evolution of the com-
puted fundamental frequencies f; for the SCI case.
More accurately for the creation of this figure we
register the frequency bins in which site frequencies
reside in the time intervals 0 < ¢ < 10® [Fig. [Ti(a)]
and 9-10% < ¢ < 10° [Fig.[[(b)], with each occupied
bin colored according to its FiS value (i.e. the num-
ber of sites having frequencies in that bin), in anal-
ogy to Fig. Bl Similarly to what was observed in the
weak chaos case in Fig. A the number of excited fre-
quencies increases in time, although this increase is
not as profound as in the WCI case. The striking dif-
ference between Figs. Bl and [[Tlis that in the strong
chaos case significantly more frequencies are excited
than in the weak chaos regime, for both depicted
time intervals. This is in perfect agreement with the
theoretical prediction that the strong chaos spread-
ing behavior is related to a widespread excitation
of normal mode frequencies |Skokos & Flach, 2010;
Laptyeva et al), 12010; [Flach, 2010; [Bodyfelt et al.,
20114]. Another important difference is that in the
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Similar to Fig. B but for the strong chaos case SCI.
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strong chaos case many more frequencies influence
the dynamics than in the weak chaos case. This is
vividly seen in Fig. [[I(b) where a lot of frequency
bins, throughout the whole frequency spectrum, are
highly populated (i.e. having large F'S values and
consequently colored in red and yellow). Neverthe-
less, again a concentration of bins with high F\S
values at the central region of the frequency band
is observed.

The results presented in Figs. BHIIl for the
SCI case are typical for the strong chaos spreading
dynamical regime, as similar behaviors have been
obtained for all other tested strong chaos cases.
The explicit results for one such case, the one we
named SCII in Sec. [ are presented in Fig. [2 It
is worth noting that the width of the frequency
band (@) of the system’s normal modes, denoted
by the horizontal dashed green lines in Figs. [2(g)
and[I2|(h), is larger than the ones related to all other

Frequency Map Analysis of Spatiotemporal Chaos

studied cases having W = 4, as W = 3 for the SCII
case. Nevertheless, the qualitative features observed
in Figs.[2(g) andI2(h) are similar to the ones seen
in Fig. [l

3.3. Selftrapping dynamical regime

Although the main objective of our work is to
understand the spatiotemporal behavior of chaos
for energy propagation in disordered lattices, as well
as to identify the differences between the weak and
strong chaos spreading regimes, we also consider
in our study, mainly for completeness’ sake, a case
belonging to the selftrapping regime. This is the STI
case mentioned in Sec. Bl whose dynamics has been
studied in [Flach et all, 2009; Skokos et all, 12009].
The existence of the selftrapping dynamical
regime was theoretically predicted for the 1D
DDNLS system in [Kopi ] and was

[Kopidakis et all, 2008
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contrast to W = 4 in all other studied cases.
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further discussed in |Skokos et al), 2009]. Accord-
ing to those studies, in the case of single site exci-
tations, and for strong enough nonlinearities, the
induced nonlinear frequency shift moves the fre-
quencies of some of the excited oscillators outside
the model’s linear spectrum, resulting in the local-
ization of a part of the wave packet, with the
remainder spreading subdiffusively. Although the
theoretical prediction of this behavior was done
only in the case of the 1D DDNLS model, the
selftrapping regime was numerically observed both
for the 1D DDNLS and DKG systems in several
publications, e.g. [Flach et all, 2009; [Skokos et al.,
2009; ISkokos & Flachl, 2010; [Laptyeva et al., 2010;
Bodyfelt et all, [20114], mainly through the moni-
toring of wave packet profiles and the computation
of mg and P, with the latter remaining practically
constant. Thus, these numerical studies denoted the
generality of the selftrapping behavior.

The time evolution of the STI case’s funda-
mental frequencies, along with their FS, given in
Fig. I3l clearly show, to the best of our knowledge
for the first time, the existence of lattice sites hav-
ing frequencies outside the frequency band of the
linear model (identified by the horizontal, dashed
green lines in Fig. [[3)), something which is a basic
ingredient for the theoretical description of the self-
trapping regime. Thus, our numerical results pro-
vide strong additional evidences of the correctness
of the developed theoretical framework.

Furthermore, it is worth noting some similar-
ities between Fig. and the behaviors observed
for the weak chaos case [Figs. Bl Bl(g) and [Bi(h)],
as in both cases fewer frequencies are excited with
respect to the strong chaos case [Figs. [ I2(g)
and [[2(h)]. In addition, in both the weak chaos

1-108 9.0-10°

94108 9.6- 108 9.8 108 1.0-10°

t

92108

Similar to Fig. [l but for the selftrapping case STI.

and selftrapping cases a rather small number of fre-
quencies have large FS values, corresponding to red
and yellow colored points in Figs. B Bl(g) and [6l(h)
(weak chaos) and in Fig. [[3 (selftrapping). More-
over, the number of excited frequencies increase
as time grows, as the size of the white region in
Fig. 3(b) for 9 - 108 < ¢ < 10? is smaller than
the one of the initial phases of the evolution in
Fig. [[3l(a).

4. Summary and Discussion

Based on results obtained by the FMA of the evolu-
tion of initially localized energy excitations we stud-
ied the features of spatiotemporal chaos in a proto-
typical model of 1D disordered nonlinear lattices,
namely the DKG system. We focused our investiga-
tion on well-established dynamical behaviors lead-
ing to the destruction of Anderson localization,
which have been investigated in the past by dif-
ferent approaches |[Flach et all, 12009; ISkokos et _al.,
2009; [Laptveva._et _all, [2010; [Skokos & Flach, 12010;
Flachl, 2010; Bodyfelt et al., 2011a; Bodyfelt et al.,
2011b; ISkokos et _all, 2013; |Antonopoulos et _al.,
2014; |[Antonopoulos et all, 12017; |Senyvange et al.,
2018]: the so-called weak and strong chaos spread-
ing regimes. In particular, we studied in detail
the characteristics and the evolution of chaos in
these two cases, as well as explored the differences
encountered between these regimes.

Using the relative change D; (8) of the com-
puted fundamental frequencies in two successive
time windows as an indicator of chaos for each
lattice site [Figs. B(b), BI(d), B(a), B(b), B(b), B(d)
and [[2(a), I2A(b)] we showed that, in both the weak
and strong chaos cases, chaotic behavior mainly
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appears at the central regions of the wave packet,
where also the energy density & @) [Figs. 2l(a),
Rlc) and B(a), B(c)] is relatively large, while sites
at the edges of the wave packet forms a zone of
regular motion. The width of this zone is larger in
the weak chaos case, which consequently means that
the chaotic component of the wave packet is more
extended in the strong chaos regime.

In order to quantify further these findings, and
to also investigate in more detail the features of the
chaotic part of the dynamics, we followed the pro-
gression of a quantity we named frequency locking
(FL;), which is measuring the degree of practical
frequency constancy (denoting nonchaotic behav-
ior), of each oscillator in time windows of fixed
length [Figs. B @ B(c)-0(f), @ I @I2c)I2f)].
The analysis of our FL; computations showed that
the percentage of nonchaotic oscillators in the wave
packet is about three times larger in the weak
chaos regime with respect to the strong chaos case.
Obviously this means that the fraction of oscil-
lators behaving chaotically is much larger in the
strong chaos regime. Apart from this important dif-
ference, our study showed that the percentage of
strongly chaotic sites, i.e. oscillators continuously
exhibiting many and large changes in their frequen-
cies and consequently having low FL; values (typ-
ically FL; < 0.4), is much higher in the strong
chaos case, usually around five times higher than
in the weak chaos one. These observations, legit-
imize and further support, in some sense, the nam-
ing of the weak and strong chaos regimes
2010; ISkokos & Flach, 12010 [Laptyeva. et all, |2Q1d
as in the latter case chaotic behavior is indeed more
pronounced and extended.

An additional interesting feature we noticed
is that, in both spreading regimes, although the
percentage of chaotic oscillators eventually remains
almost fixed (because the percentage of regularly
behaving sites with FL; = 1 practically satu-
rates to a more or less constant value [insets of
Figs. B(a), B(c), B(e), B(f), [x), Mc) and [(e),
[[2(f)]) the fraction of highly chaotic oscillators
(sites having e.g. FL, < 0.4) decreases in time.
Thus, chaos persists although it becomes weaker
in time. This observation is in agreement with
the picture emerging from the computation of the
ftMLE A(t) [Figs. l(c) and [(c)], that as time
passes, the strength of chaos [quantified by the value
of A(t)] decreases, but nevertheless without show-
ing any tendency to crossover to regular dynamics
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(which corresponds to A(t) o t71), as was also
shown in various studies through the computation
of other quantities, like for example mso
[2010; [Skokos & Flacll, [2010; Laptyeva et all, 2010
Bodyfelt _et alJ: 201 1a| ._g-Gaussians [Antonopou-
los et al., ; Antonopoulos et _al | and A
ISkokos et all, 12013; [Senyange et all, 12018].

All these results allow us to better understand
the mechanisms of energy spreading and the pro-
cess of chaotic destruction of Anderson localization
for the case of initially localized excitations in dis-
ordered lattices. The constant energy spreads in
time to more sites as oscillators at the edges of the
wave packet start acquiring energy and begin their
motion, initially in a regular, nonchaotic fashion. As
time passes these oscillators gain more energy and
eventually become chaotic, and get incorporated in
the significantly excited part of the wave packet, not
belonging any more to the regularly-behaving edges.
As additional oscillators get excited, the energy is
distributed among more sites reducing in this way
the amount of energy per particle in the excited part
of the lattice. Thus, although the number of chaotic
oscillators is continuously increasing the strength of
their chaotic behavior is lessened.

A significant outcome of our study is the finding
of the excited frequencies in the dynamics and, more
importantly, the identification of the ones which
influence the most the system’s behavior [Figs. [
0l(g),[6(h), [T and I2(g), I2(h)], through the compu-
tation of the number of oscillators moving according
to these frequencies (a quantity we refer to as the
related frequency strength, F'S). A remarkable dif-
ference between the weak and strong chaos regimes
is that in the latter case a significantly larger num-
ber of frequencies is excited, even from the first
stages of the evolution. This contrast remains valid
for the whole duration of our numerical simulations,
with more frequencies been activated as time passes,
although a higher increase rate is observed in the
weak chaos regime. The excitation of more frequen-
cies in the strong chaos case is in accordance to the
extended chaotic interactions of the system’s nor-
mal modes, which were theorized to take place in

this case [Skokos & Flach, 2010; [Laptyeva et all,
2010; [Flach, 2010; Bodyfelt. et all, [2011a].
Furthermore, it is worth mentioning that in our
study we also provided some significant numeri-
cal results for the selftrapping dynamical regime,
where a large part of the wave packet remains local-
ized. Our findings (Fig. @3] confirm the shifting
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of frequencies outside the normal mode frequency
band, a phenomenon which is at the core of the
theoretical treatment of this dynamical behavior.
Apart from understanding in more depth the
chaotic spreading processes in disordered nonlin-
ear lattices, the numerical approaches implemented
in our study (FMA, variations of fundamental
frequencies, FIL and FS) can be used to follow pos-
sible subtle changes in the local dynamical evolu-
tion of multidimensional systems. The overall char-
acterization of chaos through the computation of
some chaos indicators, like the MLE, depends on
the collective behavior of the system and fails to
identify localized differences in the dynamics, like
for example the appearance of localized chaotic
hot spots |Tieleman et all, 2014]. The study of
the properties of the deviation vector distribution
(DVD) related to the computation of the MLE
has already been implemented as a mean to tackle

this problem [Skokos et all, [2013; [Senvange et all,
2018; Ngapasare et all, 2019; Miranda Filho et all,
]. The numerical methods presented here can
be implemented as alternative and complementary
approaches for the same purpose.
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